Zha Phone: +86-17741852357 Email: 20377365@buaa.edu.cn Github: https://github.com/zzh-cycling		aohui Zhi Blog: https://zzh-cycling.gith Mail Address: No. 37 Xueyuan Ro Beijing, 100191	ub.io/myself/ ad, Haidian District,
EDUCATION	Beihang University, School of Physics , Beijing, China BSc., Physics, Sep., 2020 - Present GPA: 3.72/4.0, major grades: 91.2 /100 Core courses grades: Quantum Mechanics 92; Advanced QM 95; Solid States Physics 94; Statistical Mechanics 92; Electrodynamics 95; Mathematical-Physical Methodology i/ ii(Group theory and Representation theory) 92/92; General Relativity 96		
	Technische Universität Dresden, Faculty of Physics , Dresden, Germany <i>Exchange program</i> , Oct., 2023 - Present		
RESEARCH INTERESTS	Non-equilibrium quantum of Strongly correlated systems dberg atoms arrays and relation	many-body physics, Quantum inform and topological phase, Quantum simulated Quantum many-body numerical of	ation and dynamics, ulation based on Ry- computation.
PROFESSIONAL SKILLS	Programming Language Numerical Skills: Exact 1 Advanced courses: Adva	s: Python, I ^A T _E X, Julia, Bash, MATL Diagonalization(ED), Matrix Product nced Quantum Mechanics; General Re	AB, Mathematica, C States(MPS) elativity; QFT i.
BACHELOR THESIS	 Quantum control phase based adiabatic tracing 10,2023 till present, Investigated the contr the underlying phase property of phase tran Tried to promote contr systems. 	e transitions analysis through a algorithm MPI for the Physics of Complex Sy ol landscape existing in quantum contri- transition, tried to classify different pl nsition using the adiabatic tracing algo- trol transition phenomenon from two o	control landscape estems, Marin Bukov rol problem, detected hases and survey the prithm. qubits to many-body
RESEARCH EXPERIENCE	 Quantum many-body sc 07,2023 till 09,2023 Reproduced the PXP states, level statistics Forward Scattering A 	car, floquet freezing and emergent City University of model, computed the overlap between for system up to $L = 32$ using ED with pproximation(FSA) state.	t conservations Hong Kong, Xiao Li \mathbb{Z}_2 state and eigen- h symmetry, built its
	• Discovered scar points model, tried to devise conservations.	s in the space of drive parameters for p a strong-drive Magnus expansion to e	periodic driving Ising explain the emergent
	 The double components Fall, 2022 till May, 2023 Two papers submitted to P Investigated a new quatoms arrays and deviations 	Rydberg arrays for quantum sin Beihang University, Jian (RX Quantum and PRB antum simulation platform, the two of elop a user-friendly Python package.	nulation Cui & Shoushu Gong components Rydberg
	• Discovered a novel cl exhibiting new symme	assical robust states, the collective Z etries and potential new Quantum Man	\mathbb{Z}_2 state $(\mathbb{Z}_2^{c_2}[Rb, Rb])$ ny-body Scar by ED.
	• Plotted the 1D phase to explain the phases.	diagram of this system and use mean	field approximation
	• Collaborated with an state and studying its	experimental group to propose a proto QMBS behaviour.	col to implement $\mathbb{Z}_2^{c_2}$
	Optimal control for CN Spring, 2022	OT gate Beihang	University, Jian Cui

- Implemented a two-qubit CNOT gate based on the Stimulated Raman Adiabatic Passage (STIRAP) process and Electromagnetically Induced Transparency (EIT) effect in Rydberg atoms.
- Optimized the laser waveform using d-CRAB algorithms, considering environmental noise to enhance the fidelity of the gate. Detailed notes can be found at https://github.com/zzh-cycling/quantum_computation.

CV Model transition and migration

Summer, 2021

HUAWEI Ascend

- Utilized CANN and ATC tools to transform the CSPDarkNet53 models
- Conducted model inference and migration, contributing to the Ascend open access community.
- **OTHERS Teaching Assistant for Thermal Dynamics and Statistical Physics A**: Collaborated with the professor to develop new lectures and slides for students, based on a newly issued book and various references such as Pathria and Kardar.

Academic activities: Organized seminars on Non-equilibrium Statistics and Solid States Physics. Participated in a Summer school organized by Peking University.

Interests: Cycling, Running, Hiking, Learning Math and Physics, Reading Poems and proses, Writing.

Honors & Awards: Merit Student of Beihang University, 2020-2021; Merit Student of Beihang University, 2022-2023